以表彰他在辛幾何學領域的開創性工作,特別是預見到如今被稱為深谷範疇的存在,該範疇由辛流形上的拉格朗日子流形組成。同時,他也領導了構建這一範疇的艱鉅任務,並隨後在辛拓撲、鏡像對稱和規範場論方面作出了突破性且影響深遠的貢獻。
2025年度邵逸夫數學科學獎頒予深谷賢治 (Kenji Fukaya),以表彰他在辛幾何學領域的開創性工作,特別是預見到如今被稱為深谷範疇的存在,該範疇由辛流形上的拉格朗日子流形組成。同時,他也領導了構建這一範疇的艱鉅任務,並隨後在辛拓撲、鏡像對稱和規範場論方面作出了突破性且影響深遠的貢獻。深谷賢治是中國北京雁棲湖應用數學研究院及清華大學丘成桐數學科學中心教授。
在經典力學中,物理系統的時間演化被描述為由哈密頓函數所決定的相空間中的流。在1960年代,阿諾德提出了一系列猜想,旨在研究當哈密頓量具有時間週期性時,該流的週期解數量的下界。在現代數學中,相空間被推廣為辛流形。一個精細的猜想則涉及辛流形上兩個拉格朗日子流形的交點數量之下界。
The Fukaya category, besides its internal beauty, is a highly efficient tool in symplectic topology. Indeed, Fukaya and his coauthors obtained new results on the non-displaceability of certain Lagrangian submanifolds and constructed new quasi-isomorphisms on the groups of Hamiltonian diffeomorphisms of some symplectic manifolds.
The Fukaya category has attracted the interest of many outstanding mathematicians in various fields. One significant reason is Kontsevich’s homological mirror symmetry conjecture formulated as an equivalence between the Fukaya category of a Calabi–Yau manifold and the derived category of coherent sheaves on its mirror manifold. Fukaya has made transformative contributions to the development of mirror symmetry notably by proposing family Floer homology.