以表彰他在辛几何学领域的开创性工作,特别是预见到如今被称为深谷范畴的存在,该范畴由辛流形上的拉格朗日子流形组成。同时,他也领导了构建这一范畴的艰钜任务,并随后在辛拓扑、镜像对称和规范场论方面作出了突破性且影响深远的贡献。
2025年度邵逸夫数学科学奖颁予深谷贤治 (Kenji Fukaya),以表彰他在辛几何学领域的开创性工作,特别是预见到如今被称为深谷范畴的存在,该范畴由辛流形上的拉格朗日子流形组成。同时,他也领导了构建这一范畴的艰钜任务,并随后在辛拓扑、镜像对称和规范场论方面作出了突破性且影响深远的贡献。深谷贤治是中国北京雁栖湖应用数学研究院及清华大学丘成桐数学科学中心教授。
在经典力学中,物理系统的时间演化被描述为由哈密顿函数所决定的相空间中的流。在1960年代,阿诺德提出了一系列猜想,旨在研究当哈密顿量具有时间週期性时,该流的週期解数量的下界。在现代数学中,相空间被推广为辛流形。一个精细的猜想则涉及辛流形上两个拉格朗日子流形的交点数量之下界。
The Fukaya category, besides its internal beauty, is a highly efficient tool in symplectic topology. Indeed, Fukaya and his coauthors obtained new results on the non-displaceability of certain Lagrangian submanifolds and constructed new quasi-isomorphisms on the groups of Hamiltonian diffeomorphisms of some symplectic manifolds.
The Fukaya category has attracted the interest of many outstanding mathematicians in various fields. One significant reason is Kontsevich’s homological mirror symmetry conjecture formulated as an equivalence between the Fukaya category of a Calabi–Yau manifold and the derived category of coherent sheaves on its mirror manifold. Fukaya has made transformative contributions to the development of mirror symmetry notably by proposing family Floer homology.